
| 1

Toward

Security-Oriented Program Analysis

Sébastien Bardin

(CEA LIST, University Paris Saclay)

Joint work with the BINSEC group @ CEA

and many other collaborators

Sébastien Bardin - Séminaire SoSySec, 2021

| 2

CODE-LEVEL SECURITY ANALYSIS crypto protocols

Sébastien Bardin - Séminaire SoSySec, 2021

Most attacks come from

implementation bugs

A (binary-level) program analysis issue!

| 3Sébastien Bardin - Séminaire SoSySec, 2021

WHY ON BINARY CODE?

Malware comprehensionNo source code Post-compilation

Protection evaluation
Very-low level reasoning

| 4

EXAMPLE: COMPILER BUG (?)

• secure source code

• insecure executable

Sébastien Bardin - Séminaire SoSySec, 2021

| 5Sébastien Bardin - Séminaire SoSySec, 2021

BINARY-LEVEL CODE ANALYSIS HAS MANY ADVANTAGES, BUT …

| 6

• This talk: our experience on adapting source-level safety analysis

to the case of binary-level security [S&P 17, CAV 18, S&P 20, NDSS 21, CAV 21, etc.]

• Challenge: how to move from safety-oriented code analysis to security-

oriented code analysis

• Question: how does code-level security differ from code-level safety?

Sébastien Bardin - Séminaire SoSySec, 2021

IN A NUTSHELL
• Focus on code-level security

• Implementation flaws / attacks

| 7

BINSEC: brings formal methods to binary-level security analysis

 Advanced reverse

 Vulnerability analysis

 Binary-level security proofs

 Low-level mixt code (C + asm)

 …

ProtectProveBreak

 Explore many input at once
 Find bugs
 Prove security

 Multi-architecture support

 x86, ARM, RISC-V

| 8Sébastien Bardin - Séminaire SoSySec, 2021

Given a path of a program

• Compute its « path predicate » f

• Solution of f input following the path

• Solve it with powerful existing solvers

EXAMPLE 2A TOOL OF CHOICE: SYMBOLIC EXECUTION (Godefroid 2005)

[variants, optimizations]

Find real bugs

Bounded verification

Robust

| 9Sébastien Bardin - Séminaire SoSySec, 2021

OUTLINE

• Prologue: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion

| 10

ABOUT FORMAL METHODS AND CODE ANALYSIS

Success in (regulated) safety-critical domains

Sébastien Bardin - Séminaire SoSySec, 2021

• Reason about the

meaning of programs

• Reason about infinite

sets of behaviours
• Typical ingredients:

transition systems,

automata, logic, …

| 11Sébastien Bardin - Séminaire SoSySec, 2021

OUTLINE

• Prologue: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion

| 12

NOW: MOVING TO BINARY-LEVEL SECURITY ANALYSIS

Sébastien Bardin - Séminaire SoSySec, 2021

| 13Sébastien Bardin - Séminaire SoSySec, 2021

• Attacker• Binary code • Properties

NOW: MOVING TO BINARY-LEVEL SECURITY ANALYSIS

| 14Sébastien Bardin - Séminaire SoSySec, 2021

OUTLINE

• Prologue: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• Going down to binary

• Adversarial setting

• « True security » properties

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion

| 15Sébastien Bardin - Séminaire SoSySec, 2021

CHALLENGE: BINARY CODE LACKS STRUCTURE
• Instructions?

• Control flow?

• Memory structure?

| 16Sébastien Bardin - Séminaire SoSySec, 2021

DISASSEMBLY IS ALREADY TRICKY! • code – data ??

• dynamic jumps (jmp eax)

| 17Sébastien Bardin - Séminaire SoSySec, 2021

DISASSEMBLY IS ALREADY TRICKY! • code – data ??

• dynamic jumps (jmp eax)

• Recovering the CFG is already a

challenge!

| 18

BINARY-LEVEL ANALYSIS

Sébastien Bardin - Séminaire SoSySec, 2021

• Low-level control (CFG?)

• Low-level data & memory

Machine codes are complex

| 19

BINARY-LEVEL ANALYSIS

Sébastien Bardin - Séminaire SoSySec, 2021

• Low-level control (CFG?)

• Low-level data & memory

At the edge of

current methods

Break an implicit

assumption in code

analysis

Machine codes are complex• Solved problem

• IR

| 20Sébastien Bardin - Séminaire SoSySec, 2021

BINARY CODE SEMANTIC LACKS STRUCTURE

Problems

• Jump eax

• Untyped memory

• Bit-level resoning

| 21Sébastien Bardin - Séminaire SoSySec, 2021

BINARY CODE SEMANTIC LACKS STRUCTURE

| 22Sébastien Bardin - Séminaire SoSySec, 2021

OUTLINE

• Context: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• Going down to binary

• Adversarial setting

• « True security » properties

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion

| 23

CHALLENGE: ATTACKER

Sébastien Bardin - Séminaire SoSySec, 2021

Nature is not nice Attacker is evil

Image by Florent Kirchner

| 24Sébastien Bardin - Séminaire SoSySec, 2021

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

| 25Sébastien Bardin - Séminaire SoSySec, 2021

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

• Still, our current attacker plays the rules: respects the program interface

• Can craft very smart input, but only through expected input sources

| 26Sébastien Bardin - Séminaire SoSySec, 2021

ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful!

• Still, our attacker plays the rules: respects the program interface

• Can craft very smart input, but only through expected input sources

• What about someone who do not play the rules?

• Side channel attacks

• Micro-architectural attacks

| 27Sébastien Bardin - Séminaire SoSySec, 2021

ADVERSARIAL BINARY CODE

• self-modification

• encryption

• virtualization

• code overlapping

• opaque predicates

• callstack tampering

• …

| 28Sébastien Bardin - Séminaire SoSySec, 2021

OUTLINE

• Context: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• Going down to binary

• Adversarial setting

• True security properties

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion

| 29

EXAMPLE: TIMING ATTACKS

Sébastien Bardin - Séminaire SoSySec, 2021

Information leakage Properties over pairs of executions

| 30

EXAMPLE: TIMING ATTACKS

Sébastien Bardin - Séminaire SoSySec, 2021

Information leakage Properties over pairs of executions

• Hyperproperties

• Quantitative

| 31Sébastien Bardin - Séminaire SoSySec, 2021

OUTLINE

• Context: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion

| 32

BINSEC: brings formal methods to binary-level security analysis

 Advanced reverse

 Vulnerability analysis

 Binary-level security proofs

 Low-level mixt code (C + asm)

 …

ProtectProveBreak

 Explore many input at once
 Find bugs
 Prove security

 Multi-architecture support

 x86, ARM, RISC-V

| 33Sébastien Bardin - Séminaire SoSySec, 2021

Key 1: INTERMEDIATE REPRESENTATION [CAV’11]

• Concise

• Well-defined

• Clear, side-effect free

| 34Sébastien Bardin - Séminaire SoSySec, 2021

INTERMEDIATE REPRESENTATION

• Concise

• Well-defined

• Clear, side-effect free

| 35Sébastien Bardin - Séminaire SoSySec, 2021

Given a path of a program

• Compute its « path predicate » f

• Solution of f input following the path

• Solve it with powerful existing solvers

EXAMPLE 2Key 2: SYMBOLIC EXECUTION (Godefroid 2005)

[variants, optimizations]

Find real bugs

Bounded verification

Robust

| 36Sébastien Bardin - Séminaire SoSySec, 2021

PATH PREDICATE COMPUTATION & SOLVING

Y0 = 0 /\ Z0=3SMT Solver

my input!!

Blackbox

solvers

| 37Sébastien Bardin - Séminaire SoSySec, 2021

ALSO: STATIC SEMANTIC ANALYSIS

(harder, doable on some classes of programs) [vmcai 11, fm 16]

Reason about all paths

• Prove things

Complete verification

| 38Sébastien Bardin - Séminaire SoSySec, 2021

OUTLINE

• Prologue: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion

| 39Sébastien Bardin - Séminaire SoSySec, 2021

Case 1: Vulnerability finding with symbolic execution

(Godefroid et al., Cadar et al., Sen et al.)

Intensive path exploration

Target critical bugs

Challenge = path

explosion

| 40Sébastien Bardin - Séminaire SoSySec, 2021

Case 1: Vulnerability finding with symbolic execution

(Heelan, Brumley et al.)

Intensive path exploration

Target critical bugs

Directly create simple exploits

Challenge = path

explosion

| 41Sébastien Bardin - Séminaire SoSySec, 2021

Case 1: What about hard-to-find bugs

[SSPREW’16](with Josselin Feist et al.)

Use-after-free bugs

• Very hard to find

• Sequence of events

• DSE gets lost

| 42Sébastien Bardin - Séminaire SoSySec, 2021

Case 1: What about hard-to-find bugs

[SSPREW’16](with Josselin Feist et al.)

Use-after-free bugs

• Very hard to find

• Sequence of events

• DSE lost

Guide DSE with an

unsound static analysis

| 43Sébastien Bardin - Séminaire SoSySec, 2021

CASE 2: reverse & deobfuscation

The predicate is

always true

The two blocks

are equivalent

All jump targets

are found

• Prove something infeasible

• SE cannot help here

| 44Sébastien Bardin - Séminaire SoSySec, 2021

BACKWARD-BOUNDED DSE [S&P 2017] (with Robin David)

Backward bounded SE

• Compute k-predecessors

• If the set is empty, no pred.

• Allows to prove things

• Prove things

• Local scalable

| 45Sébastien Bardin - Séminaire SoSySec, 2021

Wait …

• False Negative: k too small
• Missed proofs

| 46Sébastien Bardin - Séminaire SoSySec, 2021

Wait …

• False Negative: k too small
• Missed proofs

• False Positive: CFG incomplete
• Wrong proofs ?!

| 47Sébastien Bardin - Séminaire SoSySec, 2021

Wait …

• False Negative: k too small
• Missed proofs

• False Positive: CFG incomplete
• Wrong proofs

• Low rate of wrong proofs

• Controlled XPs

| 48

Case 2: THE XTUNNEL MALWARE

-- [BlackHat EU 2016, S&P 2017] (Robin David)

Two heavily obfuscated samples
• Many opaque predicates

Goal: detect & remove protections
• Identify 40% of code as spurious

• Fully automatic, < 3h [now: 20min]

Sébastien Bardin - Séminaire SoSySec, 2021

Backward-bounded SE

+ dynamic analysis

| 49

Case 3: SECURING CRYPTO-PRIMITIVES

-- [S&P 2020, NDSS 2021] (Lesly-Ann Daniel)

Sébastien Bardin - Séminaire SoSySec, 2021

Property: timing attacks

Attacker: speculation

| 50

Case 3: SECURING CRYPTO-PRIMITIVES

-- [S&P 2020, NDSS 2021] (Lesly-Ann Daniel)

Sébastien Bardin - Séminaire SoSySec, 2021

• 397 crypto code samples, x86 and ARM

• New proofs, 3 new bugs (of verified codes)

• Potential issues in some protection schemes

• 600x faster than prior workl

Relational symbolic execution

Follows paires of execution

Check for divergence

Sharing, merging, preprocess

| 51

• SMT solvers are powerful weapons

• But (binary-level) security problems are terrific beasts

• Finely tuning the technology can make a huge difference

Sébastien Bardin - Séminaire SoSySec, 2021

Under the hood: finely tune the technology

• 600x faster than prior approach• Some queries: 24h 1min

| 53

• Makes the difference!

Sébastien Bardin - Séminaire SoSySec, 2021

Tuning the solver: intensive array formulas

[LPAR 2018] (Benjamin Farinier)

• Dedicated data structure (list-map)

• Tuned for base+offset access

• Linear complexity

| 54Sébastien Bardin - Séminaire SoSySec, 2021

Zoom: efficient low-level memory reasoning [LPAR 2018]

Array theory

• Necessary to model memory

• Hard for solvers (case splits)

ROW rule may

introduce case-splits

Goal: make it tractable

| 55Sébastien Bardin - Séminaire SoSySec, 2021

Not pure theory!

Reverse of a ASPACK-

protected code

| 56Sébastien Bardin - Séminaire SoSySec, 2021

Not pure theory!

Reverse of a ASPACK-

protected code

Remember: binary-level

• Very long chains of write

• A single memory, no partition information

Sad state-of-the-art:

• concretize memory accesses (scale, no genericity)

• Keep symbolic (generic but no scale at all)

| 57Sébastien Bardin - Séminaire SoSySec, 2021

Inner-working of array theory

« Logical arrays » as chains of store

(« list representation »)

ROW reasoning may

introduce case-splits

Eliminate ROW

| 58Sébastien Bardin - Séminaire SoSySec, 2021

Inner-working of array theory

« Logical arrays » as chains of store

(« list representation »)

ROW reasoning may

introduce case-splits

ROW rules could be used

as a preprocessing??

Eliminate ROW

| 59Sébastien Bardin - Séminaire SoSySec, 2021

Inner-working of array theory

« Logical arrays » as chains of store

(« list representation »)

ROW reasoning may

introduce case-splits

ROW rules could be used

as a preprocessing??

Quadratic reasoning
• Term-based equality

• Disequality??

Eliminate ROW

• Constant case: too slow

• Symbolic case: no simplif.

| 60Sébastien Bardin - Séminaire SoSySec, 2021

Inner-working of array theory

« Logical arrays » as chains of store

(« list representation »)

ROW reasoning may

introduce case-splits

ROW rules could be used

as a preprocessing??

Quadratic reasoning
• Term-based equality

• Disequality??

Eliminate ROW

Goal: efficient preprocessing to remove ROW

• Completely address the constant case

• Help for the symbolic case

• Go beyond ROW (eg, WOW)

| 61Sébastien Bardin - Séminaire SoSySec, 2021

Fast array simplification (1)

• Scale

• Good when only few bases

• Dedicated data structure (list-map)

• Tuned for base+offset access

• Base can be symbolic

• n * ln(n) complexity
• Perfect for constant case

Still limited by term-equality

reasoning

| 62Sébastien Bardin - Séminaire SoSySec, 2021

Fast array simplification (2)

• Scale

• Good when only few bases

• Dedicated data structure (list-map)

• Tuned for base+offset access

• Base can be symbolic

• n * ln(n) complexity

Still limited by disequality

reasoning

• Reduce the number of bases

• Perfect for symb. stack over simple functions

| 63Sébastien Bardin - Séminaire SoSySec, 2021

Fast Array Simplification

• Scale

• Good when only few bases

• Reduce the number of bases

• Perfect for symb. stack over simple functions

• Prove disequalities between

different bases

• Dedicated data structure (list-map)

• Tuned for base+offset access

• Base can be symbolic

• n * ln(n) complexity

| 64Sébastien Bardin - Séminaire SoSySec, 2021

IT WORKS!

• Excellent for DSE-like formulas

• Slight overall improvement over SMTCOMP

| 65Sébastien Bardin - Séminaire SoSySec, 2021

Fresh results

• Focus on robust bugs

• CAV 2021

• Full verification of embedded kernels

• RTAS 2021 (best paper award)

| 66

• Standard symbolic reasoning

may produce false positive

• for example here:

• SE will try to solve a * x + b > 0

• May return a = -100, b = 10, x = 0

• Problem: x is not controlled by the user

• If x change, possibly not a solution anymore

• Example: (a = -100, b = 10, x = 1)

Sébastien Bardin - Séminaire SoSySec, 2021

Example 2: robust symbolic execution [CAV 2018, CAV 2021]

What?!!

Safety is not

security …

In practice: canaries, secret key in

uninitialized memory, etc.

| 67

• Standard symbolic reasoning

may produce false positive

• Actually, need to solve

Sébastien Bardin - Séminaire SoSySec, 2021

Example 2: robust symbolic execution

• How to solve it? (CAV18)

• Robust reachability (CAV’21)

| 68

Our solution: reduce quantified

formula to the quantifier-free case

• Approximation

• But reuse the whole SMT machinery

Sébastien Bardin - Séminaire SoSySec, 2021

Example: robustness and quantification [CAV 2018]

Key insights:

• independence conditions

• formula strengthening

| 69Sébastien Bardin - Séminaire SoSySec, 2021

OUTLINE

• Context: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusions

| 70Sébastien Bardin - Séminaire SoSySec, 2021

SOME KEY PRINCIPLES BEHIND OUR WORK?

• Robustness & precision are essential

• DSE is a good starting point

• dedicated robust and precise (but not sound) static analysis are feasible

• Can be adapted beyond the basic reachability case

• variants (backward, relational, robust)

• combination with other techniques

• Loss of guarantees

• Accept … But control!

• Look for « correct enough » solutions

• Finely tune the technology

• Tools for safety are not fully adequate for security

| 71

BINSEC is available (new release)

• Security is not safety, and it’s great fun for FM/PL researchers

• Binary level, attacker model, true security properties

• Need to revisit (deeply?) standard methods

• Two different stories: Symbolic Execution vs. Static Analysis

• Variants, combinations

• Need a real « security-oriented » code analysis framework

• Some results in that direction, still many exciting challenges

Conclusion

Sébastien Bardin - Séminaire SoSySec, 2021

https://binsec.github.io

Looking for PhD & postdoc

sebastien.bardin@cea.fr

ANR Project TAVA

Florent Kirchner

florent.kirchner@cea.fr

Software Safety and Security Laboratory

Software & Systems Engineering Department

List, CEA Tech

This document is the property of CEA. It can not be copied or disseminated without its authorization.

