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CODE-LEVEL SECURITY ANALYSIS                    crypto protocols

Sébastien Bardin - Séminaire SoSySec, 2021

Most attacks come from

implementation bugs 

A (binary-level) program analysis issue! 
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WHY ON BINARY CODE?

Malware comprehensionNo source code Post-compilation

Protection evaluation
Very-low level reasoning
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EXAMPLE: COMPILER BUG (?)

• secure source code

• insecure executable

Sébastien Bardin - Séminaire SoSySec, 2021
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BINARY-LEVEL CODE ANALYSIS HAS MANY ADVANTAGES, BUT …  
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• This talk: our experience on adapting source-level safety analysis

to the case of binary-level security [S&P 17, CAV 18, S&P 20, NDSS 21, CAV 21, etc.] 

• Challenge: how to move from safety-oriented code analysis to security-

oriented code analysis

• Question: how does code-level security differ from code-level safety? 

Sébastien Bardin - Séminaire SoSySec, 2021

IN A NUTSHELL
• Focus on code-level security

• Implementation flaws / attacks
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BINSEC: brings formal methods to binary-level security analysis

 Advanced reverse

 Vulnerability analysis

 Binary-level security proofs

 Low-level mixt code (C + asm)

 …

ProtectProveBreak

 Explore many input at once
 Find bugs
 Prove security

 Multi-architecture support

 x86, ARM, RISC-V
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Given a path of a program

• Compute its « path predicate » f

• Solution of f  input following the path

• Solve it with powerful existing solvers

EXAMPLE 2A TOOL OF CHOICE: SYMBOLIC EXECUTION   (Godefroid 2005)

[variants, optimizations]

Find real bugs

Bounded verification

Robust
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OUTLINE 

• Prologue: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion
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ABOUT FORMAL METHODS AND CODE ANALYSIS

Success in (regulated) safety-critical domains

Sébastien Bardin - Séminaire SoSySec, 2021

• Reason about the

meaning of programs

• Reason about infinite

sets of behaviours
• Typical ingredients:

transition systems,

automata, logic, …
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OUTLINE 

• Prologue: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion
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NOW: MOVING TO BINARY-LEVEL SECURITY ANALYSIS

Sébastien Bardin - Séminaire SoSySec, 2021
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• Attacker• Binary code • Properties

NOW: MOVING TO BINARY-LEVEL SECURITY ANALYSIS
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OUTLINE 

• Prologue: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• Going down to binary

• Adversarial setting

• « True security » properties

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion
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CHALLENGE: BINARY CODE LACKS STRUCTURE  
• Instructions?

• Control flow?

• Memory structure?



| 16Sébastien Bardin - Séminaire SoSySec, 2021

DISASSEMBLY IS ALREADY TRICKY! • code – data ??

• dynamic jumps (jmp eax)
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DISASSEMBLY IS ALREADY TRICKY! • code – data ??

• dynamic jumps (jmp eax)

• Recovering the CFG is already a

challenge!
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BINARY-LEVEL ANALYSIS

Sébastien Bardin - Séminaire SoSySec, 2021

• Low-level control (CFG?)  

• Low-level data & memory

Machine codes are complex
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BINARY-LEVEL ANALYSIS

Sébastien Bardin - Séminaire SoSySec, 2021

• Low-level control (CFG?)  

• Low-level data & memory

At the edge of

current methods

Break an implicit

assumption in code

analysis

Machine codes are complex• Solved problem

• IR
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BINARY CODE SEMANTIC LACKS STRUCTURE

Problems

• Jump eax

• Untyped memory

• Bit-level resoning
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BINARY CODE SEMANTIC LACKS STRUCTURE
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OUTLINE 

• Context: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• Going down to binary

• Adversarial setting

• « True security » properties

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion
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CHALLENGE: ATTACKER 

Sébastien Bardin - Séminaire SoSySec, 2021

Nature is not nice Attacker is evil

Image by Florent Kirchner
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ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful! 
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ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful! 

• Still, our current attacker plays the rules: respects the program interface

• Can craft very smart input, but only through expected input sources 
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ATTACKER in Standard Program Analysis

• We are reasoning worst case: seems very powerful! 

• Still, our attacker plays the rules: respects the program interface

• Can craft very smart input, but only through expected input sources 

• What about someone who do not play the rules?

• Side channel attacks

• Micro-architectural attacks
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ADVERSARIAL BINARY CODE

• self-modification

• encryption

• virtualization

• code overlapping

• opaque predicates

• callstack tampering

• … 
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OUTLINE 

• Context: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• Going down to binary

• Adversarial setting

• True security properties

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion
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EXAMPLE: TIMING ATTACKS

Sébastien Bardin - Séminaire SoSySec, 2021

Information leakage Properties over pairs of executions
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EXAMPLE: TIMING ATTACKS

Sébastien Bardin - Séminaire SoSySec, 2021

Information leakage Properties over pairs of executions

• Hyperproperties

• Quantitative
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OUTLINE 

• Context: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion
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BINSEC: brings formal methods to binary-level security analysis

 Advanced reverse

 Vulnerability analysis

 Binary-level security proofs

 Low-level mixt code (C + asm)

 …

ProtectProveBreak

 Explore many input at once
 Find bugs
 Prove security

 Multi-architecture support

 x86, ARM, RISC-V
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Key 1: INTERMEDIATE REPRESENTATION [CAV’11]

• Concise

• Well-defined

• Clear, side-effect free
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INTERMEDIATE REPRESENTATION

• Concise

• Well-defined

• Clear, side-effect free
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Given a path of a program

• Compute its « path predicate » f

• Solution of f  input following the path

• Solve it with powerful existing solvers

EXAMPLE 2Key 2: SYMBOLIC EXECUTION   (Godefroid 2005)

[variants, optimizations]

Find real bugs

Bounded verification

Robust
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PATH PREDICATE COMPUTATION & SOLVING

Y0 = 0 /\ Z0=3SMT Solver

my input!!

Blackbox

solvers



| 37Sébastien Bardin - Séminaire SoSySec, 2021

ALSO: STATIC SEMANTIC ANALYSIS 

(harder, doable on some classes of programs)  [vmcai 11, fm 16] 

Reason about all paths

• Prove things

Complete verification
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OUTLINE 

• Prologue: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusion
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Case 1: Vulnerability finding with symbolic execution

(Godefroid et al., Cadar et al., Sen et al.) 

Intensive path exploration

Target critical bugs

Challenge = path

explosion
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Case 1: Vulnerability finding with symbolic execution

(Heelan, Brumley et al.)

Intensive path exploration

Target critical bugs

Directly create simple exploits 

Challenge = path

explosion
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Case 1: What about hard-to-find bugs 

[SSPREW’16](with Josselin Feist et al.)

Use-after-free bugs

• Very hard to find

• Sequence of events

• DSE gets lost



| 42Sébastien Bardin - Séminaire SoSySec, 2021

Case 1: What about hard-to-find bugs 

[SSPREW’16](with Josselin Feist et al.)

Use-after-free bugs

• Very hard to find

• Sequence of events

• DSE lost

Guide DSE with an

unsound static analysis
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CASE 2: reverse & deobfuscation

The predicate is

always true

The two blocks 

are equivalent

All jump targets

are found

• Prove something infeasible

• SE cannot help here
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BACKWARD-BOUNDED DSE [S&P 2017] (with Robin David) 

Backward bounded SE

• Compute k-predecessors

• If the set is empty, no pred. 

• Allows to prove things

• Prove things

• Local  scalable
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Wait … 

• False Negative: k too small
• Missed proofs
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Wait … 

• False Negative: k too small
• Missed proofs

• False Positive: CFG incomplete
• Wrong proofs ?!
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Wait … 

• False Negative: k too small
• Missed proofs

• False Positive: CFG incomplete
• Wrong proofs

• Low rate of wrong proofs

• Controlled XPs
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Case 2: THE XTUNNEL MALWARE    

-- [BlackHat EU 2016, S&P 2017] (Robin David) 

Two heavily obfuscated samples
• Many opaque predicates

Goal: detect & remove protections
• Identify 40% of code as spurious

• Fully automatic, < 3h    [now: 20min]

Sébastien Bardin - Séminaire SoSySec, 2021

Backward-bounded SE

+ dynamic analysis
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Case 3: SECURING CRYPTO-PRIMITIVES   

-- [S&P 2020, NDSS 2021] (Lesly-Ann Daniel)

Sébastien Bardin - Séminaire SoSySec, 2021

Property: timing attacks

Attacker: speculation
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Case 3: SECURING CRYPTO-PRIMITIVES   

-- [S&P 2020, NDSS 2021] (Lesly-Ann Daniel)

Sébastien Bardin - Séminaire SoSySec, 2021

• 397 crypto code samples, x86 and ARM

• New proofs, 3 new bugs (of verified codes)

• Potential issues in some protection schemes

• 600x faster than prior workl

Relational symbolic execution

Follows paires of execution

Check for divergence

Sharing, merging, preprocess
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• SMT solvers are powerful weapons

• But (binary-level) security problems are terrific beasts

• Finely tuning the technology can make a huge difference

Sébastien Bardin - Séminaire SoSySec, 2021

Under the hood: finely tune the technology

• 600x faster than prior approach• Some queries: 24h  1min
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• Makes the difference! 

Sébastien Bardin - Séminaire SoSySec, 2021

Tuning the solver: intensive array formulas

[LPAR 2018] (Benjamin Farinier)

• Dedicated data structure (list-map)

• Tuned for base+offset access

• Linear complexity
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Zoom: efficient low-level memory reasoning [LPAR 2018]

Array theory

• Necessary to model memory

• Hard for solvers (case splits) 

ROW rule may

introduce case-splits

Goal: make it tractable 
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Not pure theory!

Reverse of a ASPACK-

protected code
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Not pure theory!

Reverse of a ASPACK-

protected code

Remember: binary-level

• Very long chains of write

• A single memory, no partition information

Sad state-of-the-art:

• concretize memory accesses (scale, no genericity)

• Keep symbolic (generic but no scale at all)
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Inner-working of array theory

« Logical arrays » as  chains of store 

(« list representation »)

ROW reasoning may

introduce case-splits

Eliminate ROW
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Inner-working of array theory

« Logical arrays » as  chains of store 

(« list representation »)

ROW reasoning may

introduce case-splits

ROW rules could be used

as a preprocessing??

Eliminate ROW
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Inner-working of array theory

« Logical arrays » as  chains of store 

(« list representation »)

ROW reasoning may

introduce case-splits

ROW rules could be used

as a preprocessing??

Quadratic reasoning
• Term-based equality

• Disequality??

Eliminate ROW

• Constant case: too slow

• Symbolic case: no simplif.
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Inner-working of array theory

« Logical arrays » as  chains of store 

(« list representation »)

ROW reasoning may

introduce case-splits

ROW rules could be used

as a preprocessing??

Quadratic reasoning
• Term-based equality

• Disequality??

Eliminate ROW

Goal: efficient preprocessing to remove ROW

• Completely address the constant case

• Help for the symbolic case

• Go beyond ROW (eg, WOW) 
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Fast array simplification (1)

• Scale

• Good when only few bases

• Dedicated data structure (list-map)

• Tuned for base+offset access

• Base can be symbolic

• n * ln(n) complexity
• Perfect for constant case

Still limited by term-equality

reasoning
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Fast array simplification (2)

• Scale

• Good when only few bases

• Dedicated data structure (list-map)

• Tuned for base+offset access

• Base can be symbolic

• n * ln(n) complexity

Still limited by disequality

reasoning

• Reduce the number of bases

• Perfect for symb. stack over simple functions
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Fast Array Simplification 

• Scale

• Good when only few bases

• Reduce the number of bases

• Perfect for symb. stack over simple functions

• Prove disequalities between

different bases

• Dedicated data structure (list-map)

• Tuned for base+offset access

• Base can be symbolic

• n * ln(n) complexity
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IT WORKS! 

• Excellent for DSE-like formulas

• Slight overall improvement over SMTCOMP
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Fresh results

• Focus on robust bugs

• CAV 2021

• Full verification of embedded kernels

• RTAS 2021 (best paper award)
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• Standard symbolic reasoning

may produce false positive 

• for example here: 

• SE will try to solve a * x + b > 0  

• May return a = -100, b = 10, x = 0

• Problem: x is not controlled by the user

• If x change, possibly not a solution anymore

• Example: (a = -100, b = 10, x = 1) 

Sébastien Bardin - Séminaire SoSySec, 2021

Example 2: robust symbolic execution [CAV 2018, CAV 2021]

What?!!

Safety is not 

security …

In practice: canaries, secret key in 

uninitialized memory, etc.
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• Standard symbolic reasoning

may produce false positive  

• Actually, need to solve

Sébastien Bardin - Séminaire SoSySec, 2021

Example 2: robust symbolic execution

• How to solve it? (CAV18)

• Robust reachability (CAV’21)
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Our solution: reduce quantified

formula to the quantifier-free case

• Approximation

• But reuse the whole SMT machinery

Sébastien Bardin - Séminaire SoSySec, 2021

Example: robustness and quantification [CAV 2018]

Key insights:

• independence conditions

• formula strengthening
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OUTLINE 

• Context: a little bit of formal methods for safety

• Binary-level security analysis: benefits & challenges

• The BINSEC platform

• From source-level safety to binary-level security: some examples

• Conclusions
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SOME KEY PRINCIPLES BEHIND OUR WORK?  

• Robustness & precision are essential

• DSE is a good starting point 

• dedicated robust and precise (but not sound) static analysis are feasible

• Can be adapted beyond the basic reachability case

• variants (backward, relational, robust)

• combination with other techniques 

• Loss of guarantees

• Accept … But control! 

• Look for « correct enough » solutions

• Finely tune the technology

• Tools for safety are not fully adequate for security
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BINSEC is available (new release)

• Security is not safety, and it’s great fun for FM/PL researchers

• Binary level, attacker model, true security properties

• Need to revisit (deeply?) standard methods

• Two different stories: Symbolic Execution vs. Static Analysis

• Variants, combinations

• Need a real « security-oriented » code analysis framework

• Some results in that direction, still many exciting challenges

Conclusion

Sébastien Bardin - Séminaire SoSySec, 2021

https://binsec.github.io

Looking for PhD & postdoc

sebastien.bardin@cea.fr

ANR Project TAVA
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